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Abstract— Nonnegative matrix factorization (NMF) is a widely
used hyperspectral unmixing model which decomposes a known
hyperspectral data matrix into two unknown matrices, i.e.,
endmember matrix and abundance matrix. Due to the use of
least-squares loss, the NMF model is usually sensitive to noise
or outliers. To improve its robustness, we introduce a general
robust loss function to replace the traditional least-squares loss
and propose a general loss-based NMF (GLNMF) model for
hyperspectral unmixing in this letter. The general loss function is
a superset of many common robust loss functions and is suitable
for handling different types of noise. Experimental results on
simulated and real hyperspectral data sets demonstrate that our
GLNMF model is more accurate and robust than existing NMF
methods.

Index Terms— General loss, hyperspectral unmixing, nonneg-
ative matrix factorization (NMF).

I. INTRODUCTION

HYPERSPECTRAL image is obtained by simultaneously
imaging a targeted region with hundreds of continu-

ous and narrow spectral bands through hyperspectral sen-
sor. Due to the limited spatial resolution of hyperspectral
sensors and the mixing of ground materials, the observed
spectrum for a pixel may be mixed by several materials’
spectra. To deal with the mixed spectra problem, hyperspectral
unmixing decomposes a measured mixture spectrum into a
collection of endmembers and abundances. One of widely
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used hyperspectral unmixing techniques is nonnegative matrix
factorization (NMF) model [1]–[8], which can decompose a
hyperspectral data matrix into the product of two nonnegative
matrices, i.e., endmember matrix and abundance matrix.

Although the part-based representation of NMF makes the
decomposition matrices more intuitive and interpretable, the
solution space of NMF is very large. To reduce the solution
space, some additional constraints are imposed either on the
endmember matrix or on the abundance matrix, such as mini-
mum volume constraint on endmembers [6], �1/2 sparsity con-
straint on abundances [2], and sparsity-constrained deep NMF
with total variation [7]. Compared with the original NMF,
these modified NMF methods produce much better results.
However, when there exists noise in the hyperspectral data
(e.g., Gaussian noise and stripes), the performance of these
models will dramatically degrade because the least squares
objective function in these NMF methods is sensitive to noise
[9], [10]. To reduce the effect of noise, robust estimators
are introduced to replace the traditional least squares metric
and many robust NMF methods have been proposed, such as
correntropy loss-based robust NMF (CENMF) [5], �2,1-norm
and �1,2-norm-based NMF models [11].

In this letter, we introduce a robust general loss function to
replace the least squares loss and propose a general loss-based
NMF (GLNMF) model for hyperspectral unmixing. The gen-
eral loss function is a superset of many common robust loss
functions, such as Cauchy, Welsch, Geman-McClure, gener-
alized Charbonnier and Huber losses [12]. The robustness
and flexibility of the general loss function makes it suitable
to handle different types of noise, such as stripe, deadline,
and impulse noise. The general loss is mainly controlled
by a shape parameter. When the shape parameter becomes
more negative, the influence function of the general loss can
decrease and tend to zero. Therefore, it can alleviate the
influence of a single element, especially for the element with a
large noise. Considering that the objective function of GLNMF
is nonconvex and nonlinear, we transfer the GLNMF model to
an iteratively reweighted NMF problem and design a weight
function to suppress the effect of noisy bands. Experimental
results demonstrate that our proposed GLNMF model is more
accurate and robust than existing NMF methods, especially for
hyperspectral data with noisy bands.

II. NMF UNMIXING MODEL

The linear mixture model assumes that each measured pixel
can be considered as a linear mixture of several spectral
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signatures called endmembers [2], [7], [13], that is

x = Zh + e (1)

where x ∈ RM×1 is an observed spectral pixel, Z ∈ RM×P

denotes the endmember matrix, h ∈ RP×1 is the corresponding
abundance fraction vector, and e is the noise. Considering all
N pixels in the hyperspectral image, the model (1) can be
generalized as

X = ZH + E (2)

where the matrices X ∈ RM×N , H ∈ RP×N , E ∈ RM×N

represent the hyperspectral data matrix, abundance matrix, and
noise matrix, respectively.

It is obvious that the endmember matrix Z and abundance
matrix H are nonnegative and only the hyperspectral data
matrix X is determinate. On this account, the NMF model can
be used for hyperspectral unmixing [1], [2], [6]. The NMF
unmixing model is formulated as

min
Z,H

‖X − ZH‖2
F , s.t., Z � 0, H � 0 (3)

where ‖·‖F denotes the Frobenius norm. In addition, abundance
matrix H should satisfy the sum-to-one constraint: ∀p, n,∑P

p=1 Hpn = 1.
The NMF unmixing model can be solved by the multi-

plicative update algorithm [1]. However, the solution is not
unique. To limit the feasible solution set, various constraints
have been incorporated into the NMF framework [2], [5]–[7].
A representative constraint is the sparsity constraint, such as
�q-norm (q = 1/2, 1, 2) on the abundance matrix [2]. The
�1/2-norm-based NMF model is

min
Z,H

‖X − ZH‖2
F + λ‖H‖1/2 (4)

where λ is a regularization parameter and ‖H‖1/2 is the �1/2-
regularizer. In the following, we focus on the �1/2-NMF model
due to the good performance of �1/2-regularizer [2].

III. GLNMF UNMIXING MODEL

Considering that the least squares objective function in the
NMF model (4) is sensitive to noise, we introduce a general
robust loss function to suppress the large noise in the real
data and propose a robust GLNMF model for hyperspectral
unmixing.

A. General Robust Loss Function

Derived from the “generalized Charbonnier” loss, a general
loss function is defined as [12]

f (x, α, c) = |2 − α|
α

((
(x/c)2

|2 − α| + 1

)(α/2)

− 1

)
(5)

where α is a shape parameter that controls the robustness of
the loss and c is a scale parameter.

When α = 2, the loss approaches the �2 loss

lim
α→2

f (x, α, c) = 1

2
(x/c)2. (6)

Fig. 1. General loss function (a) and its influence function (b) for different
values of shape parameter α.

When α approaches zero, we can obtain the Cauchy loss

lim
α→0

f (x, α, c) = log

(
1

2
(x/c)2 + 1)

)
. (7)

The loss (5) reproduces the Welsch loss in the limit as α
approaches negative infinity

lim
α→−∞ f (x, α, c) = 1 − exp

(
−1

2
(x/c)2

)
. (8)

By continuously changing the value of shape parameter α,
the loss (5) is a generalization of the Cauchy, Geman-McClure,
Welsch, Charbonnier, generalized Charbonnier, pseudo-Huber,
�1, and �2 loss functions. To define the loss function every-
where, the final loss function can be rewritten as

f (x, α, c)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(x/c)2, if α = 2

log

(
1

2
(x/c)2 + 1)

)
, if α = 0

1 − exp

(
−1

2
(x/c)2)

)
, if α = −∞

|2−α|
α

((
(x/c)2

|2−α| +1

)α/2

− 1

)
, otherwise.

(9)

The influence function of a loss f is defined as [12], [14]

g(x) = ∂ f (x)

∂x
. (10)

For a robust estimator, its influence function should not be
sensitive to the increase of the error [14].

The general loss function and its influence function for
different values of shape parameter α are shown in Fig. 1. For
all values of α, the influence function is approximately linear
when |x | < c. This means that the effect of a small residual
is always linearly proportional to that residual’s magnitude
[12]. When α = 2 (i.e., �2 loss), the influence function is
also a linear function (unbounded) and larger residuals have
correspondingly larger effects. So, �2 loss is not a robust loss
and is sensitive to noise. When α < 1, the influence function
begins to decrease as |x | grows larger than c. As the decrease
of α, the effect of outlier is diminished, so the corresponding
losses (i.e., �1 loss with α = 1, Cauchy loss with α = 0,
Geman-McClure loss with α = −2) are robust.

Compared with a single robust loss, the general loss is
more flexibility. It has a shape parameter α to control the
robustness of the loss and a scale parameter c to control the
size of the loss’s nonrobust quadratic bowl near x = 0 [12].
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This flexibility in shaping a loss function is useful because of
non-Gaussian noise. For complex noise in hyperspectral data,
the combination of α and c can ensure the contribution of
inliers and suppress the negative effect of outliers.

B. General Loss Based NMF for Unmixing (GLNMF)

The least squares loss function in the �1/2-NMF model (4)
can be rewritten as

J (Z, H) = ‖X − ZH‖2
F =

M∑
i=1

∥∥Xi − (ZH)i
∥∥2

2 =
M∑

i=1

ei
2

where Xi denotes the i th row of the matrix X, and
ei = ‖Xi − (ZH)i‖2 measures the row-wise band error. It is
clear that J (Z, H) is sensitive to outliers in the hyperspectral
data X. To reduce the effect of noisy bands or outliers, we
introduce a general robust loss function to replace the least
squares loss and propose a GLNMF model for hyperspectral
unmixing as

min
Z,H

M∑
i=1

f
(
e2

i

)+ λ‖H‖1/2 (11)

where f is the general robust loss function defined in (9).
Because f is a nonconvex and nonlinear function, it is

difficult to solve the model (11) directly. However, we can
transfer the optimization problem to an iteratively reweighted
NMF problem

min
Z,H

M∑
i=1

wi e
2
i + λ‖H‖1/2 (12)

where the weight has the form [12]

wi = 1

ei

∂ f

∂ei
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

c2
, if α = 2

2

e2
i + 2c2

, if α = 0

1

c2
exp

(
−1

2
(ei/c)2)

)
, if α = −∞

1

c2

(
(ei/c)2

|2−α| +1

)(α/2)−1

, otherwise.

(13)

Substituting the weight and error terms into the model (12),
the objective function of GLNMF can be expressed as

M∑
i=1

wi

∥∥Xi − (ZH)i
∥∥2

2 + λ‖H‖1/2

=
M∑

i=1

∥∥∥√wi Xi − (√wi ZH
)i
∥∥∥2

2
+ λ‖H‖1/2

=
∥∥∥X̃ − Z̃H

∥∥∥2

F
+ λ‖H‖1/2 (14)

where X̃ = W1/2X and Z̃ = W1/2Z, and W is a diagonal
matrix whose diagonal element is Wii = wi .

It is obvious that the GLNMF model is a variant of the
original �1/2-NMF model, and the multiplicative update rule
for the �1/2-NMF can also be applied here. The whole process
of GLNMF model is summarized in Algorithm 1.

Algorithm 1 GLNMF for Hyperspectral Unmixing
Input: hyperspectral data matrix X,

initial endmember Z0 and abundance H0,
the shape parameter α and scale parameter c.

Output: endmember and abundance matrices.

1. Initialize Z(0) = Z0, H(0) = H0, set k = 1.
2. Run the following steps until convergence:

(a) calculate the errors:
(ei

2)(k) = ‖Xi − (Z(k−1)H(k−1))i‖2
2

(b) compute the weight of each entry:
wi = w((ei

2)(k), α, c)

(c) update weight: W(k) = diag
{
w(k)

1 , . . . , w(k)
M

}
(d) update matrix:

X̃ = (W(k))
1
2 X

Z̃(k−1) = (W(k))
1
2 Z(k−1)

(e) solve endmember matrix and abundance matrix:
(Z̃(k), H(k)) = L1/2NMF(X̃, Z̃(k−1), H(k−1))

Z(k) = (W(k))−
1
2 Z̃(k)

(g) k = k + 1

IV. EXPERIMENTS

In this section, we use synthetic and real-world hyper-
spectral data sets to evaluate our GLNMF model and com-
pare it to other methods, such as standard NMF, �1/2-NMF
[2], �1,2-NMF [8], correntropy-induced metric-based NMF
(CIMNMF), Huber-NMF, and CENMF [5]. The spectral angle
distance (SAD) and abundance maps are used to evaluate
the accuracy of the extracted endmembers and corresponding
abundances. The vertex component analysis (VCA) and fully
constrained least squares (FCLS) methods are used to initialize
the endmember matrix and abundance matrix, respectively.

A. Experiments on Synthetic Data

To construct the synthetic data, we first select seven spec-
tral signatures (i.e., “Carnallite NMNH98011,” “Actinolite
NMNHR16485,” “Andradite WS487,” “Diaspore HS416.3B,”
“Erionite + Merlinoit GDS144,” “Halloysite NMNH106236,”
“Hypersthene NMNHC2368”) from the United States Geolog-
ical Survey (USGS) spectral library to construct the endmem-
ber matrix. Then, these seven spectra are mixed according
to the method in [7] to form the corresponding abundances,
and guarantee the nonnegative and sum-to-one constraints. The
synthetic data X is generated by the product of the endmem-
ber matrix and the abundance matrix, which has 224 bands
and 4096 pixels. To investigate the robustness of the proposed
method, we add different types of noise to the synthetic data.

1) IID Gaussian Noise: The synthetic data X is degraded
by the independent identical distribution (iid) Gaussian noise
with distribution SNR ∼ N (SNR, �2), where SNR ∈
{5, 10, 15, 20} and � = 5. The mean of SAD results
over 20 random tests are shown in Table I, where the shape
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TABLE I

SAD RESULTS IN THE CASE OF GAUSSIAN NOISE

Fig. 2. Reference and estimated spectra for endmember 1.

and scale parameters in the GLNMF are set as: α = −1 and
c = 1.

As can be seen from these tables, the unmixing performance
of each algorithm improves significantly as the SNR increases.
In the case of a larger SNR (i.e., 20), each algorithm has
good unmixing performance, and our model also performs
well. When the noise level is high (i.e., lower SNR), other
algorithms show marginal improvement over the standard
NMF, while our GLNMF model still shows excellent unmixing
performance. In general, GLNMF provides the best results in
different levels of noise.

To visualize the results, we present the reference and
estimated spectra for the endmember 1 (i.e., “Carnallite
NMNH98011”) in the case of SNR = 10 in Fig. 2. It is
clear that GLNMF and �1,2-NMF provide relatively better
results than other methods especially in the first 100 bands,
and the estimated spectral curve by our GLNMF is more close
to the reference spectral curve than �1,2-NMF. Fig. 3 shows
the abundance map of endmember 1 obtained by different
methods, where the map from the GLNMF can approximate
to the original ground-truth map well. When the hyperspectral
data are corrupted by noise, the robustness of GLNMF helps
to improve both endmember and abundance estimation results.

2) Non-IID Noise: In real situations, some spectral bands
may be corrupted by different types of noise [15]. Here,
we randomly choose 40 bands to add following non-iid noise.

1) Non-iid Gaussian noise (NG): G(0, st ), st is different
for different bands and is generated from uniform dis-
tribution U(0, 0.5).

2) Impulse noise (I): “salt and pepper” noise with intensity
0.2 is added in the image of each chosen band.

3) Deadline noise (D): 20 deadlines are added in the image
of each chosen band.

4) Stripe noise (S): 10 stripes per band are added and the
width of stripe is between 1 and 3.

5) Gaussian + Impulse noise (GI): both 1) and 2).
6) Gaussian + Deadline noise (GD): both 1) and 3).
7) Gaussian + Stripe noise (GS): both 1) and 4).

TABLE II

SAD RESULTS IN THE CASE OF NON-IID NOISE

TABLE III

SAD OF DIFFERENT METHODS ON THE JASPER DATA

SET WITH ALL NOISY BANDS

The shape and scale parameters in the GLNMF are set as:
α = −1 and c = 1 for case 1), 4), 7), and set as α = −1
and c = 4 for case 2), 3), 5), 6). The SAD results in the case
of non-iid noise are shown in Table II. When the data are
corrupted by only one type of noise, the proposed GLNMF
provides the best results in the cases of non-iid Gaussian,
impulse, and deadline noise, and the second best result in the
case of stripe noise. In the cases of mixture noise, the GLNMF
shows the best results. It demonstrates that the GLNMF is also
effective for non-iid noise or outliers.

B. Experiments on Jasper Data

The Jasper data set consists of 224 spectral bands ranging
from 380 to 2500 nm and has the size of 512 × 614 pixels. In
the experiments, a subimage of 100 × 100 pixels is used. In
the selected region, there are four targets, i.e., road, soil, water,
and tree. Due to dense water vapor and atmospheric effects,
there exists 26 noisy bands, i.e., bands 1–3, 108–112, 154–166,
and 220–224. To test the robustness of different unmixing
methods, we investigate the performance of algorithms on
data containing noisy band images (i.e., the original data
with B = 224) and also data without noisy band images
(i.e., B = 198).

Table III shows the SAD results obtained by different
methods on the Jasper data set with noisy bands. It can be seen
that all modified NMF methods improve the original NMF at
a certain extent, and the proposed GLNMF provides the best
result. Except for our GLNMF, other NMF methods shows
very bad results on the endmember “Road.” The abundance
maps corresponding to endmember “Road” obtained by dif-
ferent methods are shown in Fig. 4. GLNMF provides more
consistent results with the ground-truth abundance while other
methods lose key information.

Fig. 5(a) shows the weights of different bands estimated by
GLNMF, where the known noisy bands, such as bands 1–3,
108–112, 154–166, and 220–224, are assigned small weights.
By adaptively assigning small weights to noisy bands, our
proposed GLNMF is much more robust to noise than tradi-
tional NMF models. In the proposed GLNMF, the parameter

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 29,2021 at 07:25:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: GLNMF FOR HYPERSPECTRAL UNMIXING 5

Fig. 3. Abundance maps for endmember 1. (a) Ground-truth, (b) NMF, (c) �1/2-NMF, (d) �1,2-NMF, (e) CENMF, (f) CIMNMF, (g) Huber-NMF, and
(h) GLNMF.

Fig. 4. Abundance maps for endmember “Road.” (a) Ground-truth, (b) NMF, (c) �1/2-NMF, (d) �1,2-NMF, (e) CENMF, (f) CIMNMF, (g) Huber-NMF, and
(h) GLNMF.

Fig. 5. Band weights and the effect of shape parameter on Jasper with the
noisy bands: (a) Band weights and (b) SAD versus the shape parameter α.

TABLE IV

SAD OF DIFFERENT METHODS ON THE JASPER DATA SET
WITHOUT THE NOISY BANDS

α decides the shape of the general loss. Fig. 5(b) shows the
performance of GLNMF at different shape parameters. It can
be seen that GLNMF shows good performance when α is
smaller than 1.

The SAD results obtained by different methods on the
Jasper data set without noisy bands are shown in Table IV,
where our proposed GLNMF also shows the overall best
result. By deleting 26 noisy bands, the results on the
remaining 198 bands are slightly better than those on the
full 224 bands.

V. CONCLUSION

In this letter, we have proposed a GLNMF model for the
unmixing of hyperspectral images. The general loss function is
a superset of many common robust loss functions and is very
flexible in handling different types of noise. By choosing a
negative shape parameter, the influence function of the general
loss is bounded and decreases, and hence, the general loss
becomes a very robust loss. Experimental results on simulated
and real hyperspectral data sets demonstrate that our proposed

GLNMF model can effectively suppress large noise in the real
data and is robust for noisy bands.
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